

### **OBJECTIVES**

#### **STUDENTS WILL BE ABLE TO:**

**Understand** how liner system equations are solved by elimination and substitution method

#### **KEY VOCABULARY:**

- Solve linear equation and simultaneous equations.
- Apply methods of substitution and elimination to solve system of equations.

#### **INTRODUCTION**

By system of equation we mean the system having more than one equation.

A system of simultaneous equations is a group of equations that must be all true at the same time.

By solution of equation we mean the values which satisfy the given system of equations.





#### INTRODUCTION

consider two linear equations in two variables, x and y, such as

$$5x - 3y = 4$$

$$3x + 3y = 1$$

Instead of one equation in one unknown, we have here two equations and two unknowns. In order to find a solution for this pair of equations, the unknown numbers x and y have to satisfy **both** equations.

Hence, we call this system or pair of equations or simultaneous equations. We now focus on various methods of solving simultaneous equations.



### **METHODS TO SOLVE**

Basically there are three methods to solve system of equations:

- a. By substitution
- b. By elimination
- c. By comparison





### **PROBLEM 01**

Solve the system of equation by elimination method.

$$7x + 2y = 47$$
$$5x - 4y = 1$$

$$5x - 4y = 1$$





#### **PROBLEM 01**



Now adding eq (ii) and (iii)

$$5x-4y=1$$
  
 $14x+4y=94$   
 $19x = 95$ 

$$x = \frac{95}{19} = 5$$





#### **PROBLEM 01**



$$5(5) - 4y = 1$$

$$-4y = 1 - 25$$

$$4y = 24$$

$$y = 6$$

**Solution Set= {(5,6)}** 





#### **PROBLEM 02**

Solve the system of equation by elimination method.

$$\frac{x+1}{y+1} = 2$$

$$\frac{2x+1}{2y+1} = \frac{1}{3}$$





#### **PROBLEM 02**

Simplify eq i and ii

$$x + 1 = 2(y + 1)$$

$$x = 2y + 2 - 1$$

$$x - 2y = 1$$

$$3(2x + 1) = 2y + 1$$

$$6x + 3 = 2y + 1$$

$$6x - 2y = -2$$
(iv)



#### **PROBLEM 02**



$$6x-2y=-2 \\ \pm x + 2y = \pm 1 \\ \hline 5x=-3 \\ x=-3/5$$

Substituting x=-3/5 in eq iii we get

$$-3/5-2y=1$$
  
 $-2y=1+3/5$ 

$$y=2/5$$

**Solution Set= {(-3/5,2/5)}** 





### **PROBLEM 03**

Solve the system of equation by substitution method

$$x + y = 2$$

$$2x - y = 1$$





#### **PROBLEM 03**

Solving equation (i)

$$y = 2 - x$$
....(iii)

Substituting the value of y in equation (ii) we get,

$$2x - (2 - x) = 1$$

$$2x - 2 + x = 1$$

$$3x = 3$$

$$x = 1$$

Substituting the value of x in eq. iii.

$$y = 2 - 1$$

$$y = 1$$

Solution set: {(x,y)}= {(1,1)}