Algebra2Coach.com

Permutations and Combinations

Unit 6 Lesson 7

PERMUTATIONS AND COMBINATIONS

Students will be able to:

Understand the concept of permutations and combinations and their usage.

Key Vocabulary

- Principle of Counting
- Permutation
- Combination
- Factorial

PERMUTATIONS AND COMBINATIONS

What is the Fundamental Principle of Counting?

Suppose that a task $\mathbf{1}$ can be done in n_{1} ways, and a task $\mathbf{2}$ can be done in n_{2} ways, ..., and a task \boldsymbol{k} can be done in n_{k} ways, then all of these tasks can be done in:

$$
\boldsymbol{n}_{\mathbf{1}} \times \boldsymbol{n}_{\mathbf{2}} \times \ldots \times \boldsymbol{n}_{\boldsymbol{k}} \text { ways. }
$$

PROBLEM: 1

Alan bought 7 dress shirts, 5 pants and 3 shoes from a shopping mall. How many different combinations of pants, dress shirts and shoes can he make from his shopping?

Here, there are 7 dress shirts, so they can be selected in 7 different ways, so $\boldsymbol{n}_{\mathbf{1}}=7$.
There are 5 pants, so they can be selected in 5 different ways, so $n_{2}=5$.
There are 3 shoes, so they can be selected in 3 different ways, so $\boldsymbol{n}_{\mathbf{3}}=\mathbf{3}$. Now all the three things can be selected in:

$$
7 \times 5 \times 3=105 \text { ways }
$$

Hence Alan can make 105 combinations.

PERMUTATIONS AND COMBINATIONS

What is Permutation?

A permutation is the choice of r things from a set of n things without replacement and where the arrangement (order) matters.

Mathematically,

$$
{ }_{r}^{n} P=\frac{n!}{(n-r)!}
$$

Where,

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1 \text { (Termed as the } \mathbf{n} \text {-Factorial) }
$$

$$
\text { Also, } 0!=1
$$

PERMUTATIONS AND COMBINATIONS

PROBLEM: 2

Find the following:
a) ${ }_{0}^{n} P$
b) ${ }_{2}^{5} P$
a) ${ }_{0}^{n} P=\frac{n!}{(n-0)!}=\frac{n!}{n!}=1$
b) ${ }_{2}^{5} P=\frac{5!}{(5-2)!}=\frac{5!}{3!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}=5 \times 4=20$

PERMUTATIONS AND COMBINATIONS

What is Combination?

A combination is the choice of r things from a set of n things without replacement and where the arrangement (order) does not matter.

Mathematically,

$$
{ }_{r}^{n} C=\binom{\boldsymbol{n}}{\boldsymbol{r}}=\frac{\boldsymbol{n}!}{\boldsymbol{n !}(\boldsymbol{n}-\boldsymbol{r})!}
$$

Where,

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1 \text { (Termed as the } \mathbf{n} \text {-factorial) }
$$

PERMUTATIONS AND COMBINATIONS

PROBLEM: 3

Find the following:
a) ${ }_{0}^{n} C$
b) ${ }_{2}^{5} C$
a) ${ }_{0}^{n} C=\frac{n!}{0!(n-0)!}=\frac{n!}{1 \times n!}=\mathbf{1}$
b) ${ }_{2}^{5} C=\frac{5!}{2!(5-2)!}=\frac{5!}{2!3!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1) \times(3 \times 2 \times 1)}=\frac{5 \times 4}{2}=10$

Note that ${ }_{0}^{n} C={ }_{0}^{n} P=1$

