

Permutations and Combinations

Unit 6 Lesson 7

Students will be able to:

Understand the concept of permutations and combinations and their usage.

Key Vocabulary

- Principle of Counting
- Permutation
- Combination
- Factorial

What is the Fundamental Principle of Counting?

Suppose that a task **1** can be done in n_1 ways, and a task **2** can be done in n_2 ways, ..., and a task **k** can be done in n_k ways, then all of these tasks can be done in:

 $n_1 imes n_2 imes ... imes n_k$ ways.

PERMUTATIONS AND COMBINATIONS PROBLEM: 1

Alan bought 7 dress shirts, 5 pants and 3 shoes from a shopping mall. How many different combinations of pants, dress shirts and shoes can he make from his shopping?

Here, there are 7 dress shirts, so they can be selected in 7 different ways, so $n_1 = 7$.

There are 5 pants, so they can be selected in 5 different ways, so $n_2 = 5$.

There are 3 shoes, so they can be selected in 3 different ways, so $n_3 = 3$. Now all the three things can be selected in:

 $7 \times 5 \times 3 = 105$ ways

Hence Alan can make 105 combinations.

What is Permutation?

A permutation is the choice of r things from a set of n things without replacement and where the arrangement (order) matters.

Mathematically,

$${}_{r}^{n}P = \frac{n!}{(n-r)!}$$

Where,

 $n! = n \times (n - 1) \times (n - 2) \times \cdots \times 3 \times 2 \times 1$ (Termed as the **n-Factorial**) Also, 0! = 1.

PERMUTATIONS AND COMBINATIONS PROBLEM: 2

Find the following:

a) ⁿ₀P b) ⁵₂P

a)
$${}^{n}_{0}P = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$$

b) ${}^{5}_{2}P = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} = 5 \times 4 = 20$

What is Combination?

A combination is the choice of r things from a set of n things without replacement and where the arrangement (order) does not matter.

Mathematically,

$${}_{r}^{n}C = {\binom{n}{r}} = \frac{n!}{n!(n-r)!}$$

Where,

 $n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$ (Termed as the **n**-factorial)

PERMUTATIONS AND COMBINATIONS PROBLEM: 3

a 1

Find the following:

a) ${}_{0}^{n}C$ b) ${}_{2}^{5}C$

a)
$${}_{0}^{n}C = \frac{n!}{0!(n-0)!} = \frac{n!}{1 \times n!} = 1$$

b) ${}_{2}^{5}C = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1) \times (3 \times 2 \times 1)} = \frac{5 \times 4}{2} = 10$

Note that ${}_0^n C = {}_0^n P = 1$

a 1