\qquad Period: \qquad Date: \qquad

EXPLORING CONIC SECTIONS Guided Notes

A Conic Section is a curve formed by the intersection of a plane and a double cone.

By the intersection of this plane and the conic section, we can have a circle, an ellipse, a parabola or a hyperbola.

A Circle is a curve formed by the intersection of a plane and a double cone such that the plane is perpendicular to the axis of cone.

Circle

General equation:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$(\boldsymbol{h}, \boldsymbol{k})$ is the center of the circle.
Problem 1: Write the equation of circle whose center is at the origin.
\qquad Period: \qquad Date: \qquad

EXPLORING CONIC SECTIONS Guided Notes

An Ellipse is a curve formed by the intersection of a plane and a double cone such that the plane cuts the cone at an angle.

General equations:

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { (Horizontal Ellips } \\
& \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 \quad \text { (Vertical Ellipse) }
\end{aligned}
$$

Problem 2: Write the equation of a horizontal ellipse whose center is at the origin.

A Parabola is a curve formed when the plane cuts any one portion of the double cone at angle.

Parabola
\qquad Period: \qquad Date: \qquad

EXPLORING CONIC SECTIONS Guided Notes

General equations:

$$
\begin{aligned}
& (y-k)^{2}=4 a(x-h) \quad \text { (Horizontal Parabola) } \\
& (x-h)^{2}=4 a(y-k) \quad \text { (Vertical Parabola) }
\end{aligned}
$$

Problem 3: Write the equation of a vertical parabola whose center is at the origin.

A Hyperbola is a curve formed when the plane is parallel to the axis of the double cone and cuts both cones.

Hyperbola
General equations:

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { (Horizontal parabol } \\
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 \quad \text { (Vertical parabola) }
\end{aligned}
$$

