\qquad Date: \qquad

ROOTS AND RADICAL EXPRESSIONS Guided Notes

1. The root of a number k is a \qquad , which when multiplied by itself a given number of times, equals \qquad .
2. If the radicand is positive (or negative) and index is even, the roots will be \qquad _.

If the radicand is positive and index is odd, the roots will be \qquad .

If the radicand is negative and index is odd, the roots will be \qquad .

The real roots of $\sqrt[2]{81}$ are \qquad .

The real roots of $\sqrt[3]{-125}$ are \qquad .
3. $\mathrm{By} \mathrm{n}^{\text {th }}$ root property, $\sqrt[n]{a^{n}}=$ \qquad .

By quotient property of radicals, $\sqrt[n]{\frac{a}{b}}=$ \qquad .

By product property of radicals, $\sqrt[n]{a b}=$ \qquad .
4. $\sqrt[2]{25 x^{2}}=$ \qquad
$\sqrt[3]{y^{3}}=$ \qquad
$\sqrt[2]{\frac{x^{4}}{y^{4}}}=$ \qquad

