ROOTS AND RADICAL EXPRESSIONS Guided Notes

- 1. The root of a number k is a _____, which when multiplied by itself a given number of times, equals _____.
- 2. If the radicand is positive (or negative) and index is even, the roots will be _____.

If the radicand is positive and index is odd, the roots will be _____.

If the radicand is negative and index is odd, the roots will be _____.

The real roots of $\sqrt[2]{81}$ are _____.

The real roots of $\sqrt[3]{-125}$ are _____.

3. By nth root property, $\sqrt[n]{a^n} =$

By quotient property of radicals, $\sqrt[n]{\frac{a}{b}} =$ _____.

By product property of radicals, $\sqrt[n]{ab} =$ _____.

4. $\sqrt[2]{25x^2} =$

