Algebra2Coach.com

 Roots and Radical ExpressionsUnit 7 Lesson 1

ROOTS AND RADICAL EXPRESSIONS

Students will be able to:

find the roots of numbers and simplify radical expressions using roots and properties of radical expressions.

Key Vocabulary

- Roots
- Real Roots
- Radical and Radicand
- Radical Expression

What is a root?

The root of a number \mathbf{k} is a number, which when multiplied by itself a given number of times, equals \mathbf{k}. The roots of a number can be Real or complex depending on the sign associated with the number and the power.

$$
\text { nth root of } k=\sqrt[n]{k}
$$

$$
\text { nth root of } \mathrm{k}=\sqrt[n]{k}
$$

Real Even Roots:

If k is positive and n is even, the roots will be both positive and negative.

$$
\sqrt[n]{k}= \pm \text { answer }
$$

Real Odd Roots:

If k is positive and n is odd, the roots will only be positive.

$$
\sqrt[n]{k}=+ \text { answer }
$$

If k is negative and n is odd, the roots will only be negative.

$$
\sqrt[n]{k}=- \text { answer }
$$

ROOTS AND RADICAL EXPRESSIONS

Problem: 1

Find all the real roots of the following:
a) $\sqrt[4]{81}$
b) $\sqrt[3]{-8}$
a) Real Roots:

$$
\sqrt[4]{81}= \pm 3 \text { Since } 81 \text { is positive and } n=4 \text { is also positive }
$$

b) Real Roots:
$\sqrt[3]{-8}=-2$ Since -8 is negative and $\mathrm{n}=3$ is also negative

ROOTS AND RADICAL EXPRESSIONS

What is a radical?

A radical is an expression having a root. It is denoted by the symbol $\sqrt{ }$

ROOTS AND RADICAL EXPRESSIONS

Properties of Radicals

1. $\mathrm{n}^{\text {th }}$ root property:

$$
\sqrt[n]{a^{n}}=a
$$

2. Product property:

$$
\sqrt[n]{a b}=\sqrt[n]{a} \times \sqrt[n]{b}
$$

3. Quotient property:

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

Radical Expression

An expression containing a radical sign $(\sqrt{ })$. The expression can be variables and constants related by mathematical operations.

Examples:

1. $\sqrt[2]{4 x^{2}}$
2. $\sqrt[3]{6 y^{12}}$
3. $\sqrt[3]{12 z^{3}+4}$

Problem: 2
Simplify the following radical expressions:
a) $\sqrt[2]{25 x^{2}}$
b) $\sqrt[3]{z^{3}}$
c) $\sqrt[2]{\frac{x^{4}}{y^{4}}}$
a) $\sqrt[2]{25 x^{2}}=\sqrt[2]{25} \times \sqrt[2]{x^{2}}=5 x \quad$ (Using Product property)
b) $\sqrt[3]{z^{3}}=z$
(Using nth root property)
c) $\sqrt[2]{\frac{x^{4}}{y^{4}}}=\frac{\sqrt[2]{x^{4}}}{\sqrt[2]{y^{4}}}=\frac{x^{2}}{y^{2}}$
(Using Quotient Property)

