

Roots and Radical Expressions

Unit 7 Lesson 1

Students will be able to:

find the roots of numbers and simplify radical expressions using roots and properties of radical expressions.

Key Vocabulary

- Roots
- Real Roots
- Radical and Radicand
- Radical Expression

What is a root?

The root of a number **k** is a number, which when multiplied by itself a given number of times, equals **k**. The roots of a number can be Real or complex depending on the sign associated with the number and the power.

nth root of $k = \sqrt[n]{k}$

nth root of k = $\sqrt[n]{k}$

Real Even Roots:

If k is positive and n is **even**, the roots will be both positive and negative.

 $\sqrt[n]{k} = \pm$ answer

Real Odd Roots:

If k is positive and n is **odd**, the roots will only be positive.

 $\sqrt[n]{k}$ = + answer

If k is negative and n is **odd**, the roots will only be negative.

$$\sqrt[n]{k} = -$$
 answer

ROOTS AND RADICAL EXPRESSIONS Problem: 1

Find all the real roots of the following:

a) $\sqrt[4]{81}$ b) $\sqrt[3]{-8}$

a) Real Roots:

$$\sqrt[4]{81} = \pm 3$$
 Since 81 is positive and n = 4 is also positive

b) Real Roots:

$$\sqrt[3]{-8} = -2$$
 Since -8 is negative and n = 3 is also negative

What is a radical?

A radical is an expression having a root. It is denoted by the symbol $\sqrt{}$

Properties of Radicals

1. nth **root property:**

$$\sqrt[n]{a^n} = a$$

2. Product property:

$$\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}$$

3. Quotient property:

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Radical Expression

An expression containing a radical sign ($\sqrt{}$). The expression can be variables and constants related by mathematical operations.

Examples:

- *1.* $\sqrt[2]{4xy^2}$
- *2.* $\sqrt[3]{6y^{12}}$
- *3.* $\sqrt[3]{12z^3+4}$

Problem: 2 Simplify the following radical expressions: a) $\sqrt[2]{25x^2}$ b) $\sqrt[3]{z^3}$

c)
$$\sqrt[2]{\frac{x^4}{y^4}}$$

a) $\sqrt[2]{25x^2} = \sqrt[2]{25} \times \sqrt[2]{x^2} = 5x$ (Using Product property) b) $\sqrt[3]{z^3} = z$ (Using nth root property) c) $\sqrt[2]{\frac{x^4}{y^4}} = \frac{\sqrt[2]{x^4}}{\sqrt[2]{y^4}} = \frac{x^2}{y^2}$ (Using Quotient Property)