Name:	Period:	_Date:
Unit 5 Test		
1. Write the quadratic, linear and constant term in the	function $f(x) = 4$	$x^2 - 8x + 3$

quadratic term:	linear term:	constant term:

2. Write the quadratic function representing the data below.

x	-1	0	2
f (x)	1	-1	7

3. Find the equation of parabola using vertex, and y-intercept or vertex and a point given below.

Vertex (0,2), point (4,4)

4. Given the vertex of the parabola, find the coefficients of the equation of parabola.

$$y = c + x^2 + bx$$
, vertex = (1,4)

5. Determine the vertex, maximum or minimum value, and axis of symmetry of the parabola $y = -2.5(x+7)^2 + 10$.

1

6. Convert from standard form of a parabola to the vertex form.

$$3y = 3x^2 - 12x + 18 \longrightarrow$$

🖬 Algebra2Coach.com

Name: _____ Period: _____ Date: _____

Unit 5 Test

7. For the parabola of the form $y = a(x-h)^2 + k$, if a is negative, the parabola opens:

- a. Upwards
- b. Downwards
- c. Neither
- d. All of these
- 8. Factorize the following quadratic expression using the middle-term breaking method.

 $x^2 - 20x + 75 =$ _____

9. Factorize using the factorization formulas.

 $144x^2 - 72x + 9 =$

- 10. In the middle-term breaking method, the middle term of the quadratic expression is re-written as two terms such that:
 - a. The algebraic sum of two terms is equal to the middle term.
 - b. The algebraic product of two terms is equal to the product of the quadratic term and the constant term.
 - c. Both a and b
 - d. None of these

11. Find the solution of the quadratic equation given below.

$x^2 - x - 6 = 0$

12. Find the solution of the quadratic equation given below.

$$12x^2 - 36x - 48 = 0$$

Unit 5 Test

13. The solution of $x^2 - 9x - 36 = 0$ is:

a.	x = 4, -9	c.	x = 3, -9
b.	x = 4,9	d.	x = -3, 12

14. Solve and write the simplified answer.

(2+5i)(2-5i) =_____

15. Find the absolute value of the complex number given below.

-6 - 8i

16. If $i^2 = -1$, then i^3 is equal to:

a.	0	c.	-i
b.	i	d.	-1

17. Solve the equation $x^2 + 2x - 7 = 0$ by completing the square.

18. Find all the complex solutions of $x^2 + 6x + 10 = 0$ by completing squares.

19. Solve the quadratic equation $x^2 - 15x + 56 = 0$ using the quadratic formula.

20. Solve the quadratic equation $4x^2 + x + 5 = 0$ using the quadratic formula.

3

Name:	_Period:	_Date:
Unit 5 Test		
ANSWERS:		

1. Write the quadratic, linear and constant term in the function $f(x) = 4x^2 - 8x + 3$

quadratic term: $\frac{4x^2}{x^2}$ linear term: $\frac{-8x}{x}$ constant term: $\frac{3}{x}$

2. Write the quadratic function representing the data below.

x	-1	0	2
<i>f</i> (<i>x</i>)	1	-1	7
$f(x) = x^2 + x + 1_{}$			

3. Find the equation of parabola using vertex, and y-intercept or vertex and a point given below.

Vertex (0,2), point (4,4) $y = (1/8) x^2 + 2$

4. Given the vertex of the parabola, find the coefficients of the equation of parabola.

$$y = c + x^2 + bx$$
, vertex = (1,4)
 $b = -2, c = 5$

5. Determine the vertex, maximum or minimum value, and axis of symmetry of the parabola $y = -2.5(x+7)^2 + 10$.

Vertex (-7,10); Maximum value=10 ; Axis of symmetry x= -7

6. Convert from standard form of a parabola to the vertex form.

 $3y = 3x^2 - 12x + 18 \longrightarrow y = (x - 2)^2 + 2$

Algebra2Coach.com

Unit 5 Test

- 7. For the parabola of the form $y = a(x-h)^2 + k$, if a is negative, the parabola opens:
 - a. Upwards
 - b. **Downwards**
 - c. Neither
 - **d.** All of these
- 8. Factorize the following quadratic expression using the middle-term breaking method.

```
x^2 - 20x + 75 = (x - 15)(x - 5)
```

9. Factorize using the factorization formulas.

 $144x^2 - 72x + 9 = ___(12x - 3)^2___$

- 10. In the middle-term breaking method, the middle term of the quadratic expression is re-written as two terms such that:
 - a. The algebraic sum of two terms is equal to the middle term.
 - b. The algebraic product of two terms is equal to the product of the quadratic term and the constant term.

c. Both a and b

d. None of these

11. Find the solution of the quadratic equation given below.

$$x^2 - x - 6 = 0$$

_____x = 3, -2___

12. Find the solution of the quadratic equation given below.

$$12x^2 - 36x - 48 = 0$$

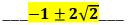
Unit 5 Test

13. The solution of $x^2 - 9x - 36 = 0$ is:

a. x = 4, -9b. x = 4,9c. x = 3, -9d. x = -3, 12

14. Solve and write the simplified answer.

 $(2+5i)(2-5i) = __29$


15. Find the absolute value of the complex number given below.

-6 - 8*i*

16. If $i^2 = -1$, then i^3 is equal to:

a. 0 b. *i* c. -*i* d. -1

17. Solve the equation $x^2 + 2x - 7 = 0$ by completing the square.

18. Find all the complex solutions of $x^2 + 6x + 10 = 0$ by completing squares.

____<mark>–3 ± i</mark>____

19. Solve the quadratic equation $x^2 - 15x + 56 = 0$ using the quadratic formula.

____<mark>7,8</mark>_____

6

Copyright © Algebra2Coach.com

📕 Algebra2Coach.com

20. Solve the quadratic equation $4x^2 + x + 5 = 0$ using the quadratic formula.

-1<u>±i√79</u> ---<mark>8</mark>----

Algebra2Coach.com