\qquad Period: \qquad Date: \qquad

CONDITIONAL PROBABILITY Exit Quiz

Two playing cards are taken from a standard 52 card deck without replacement. Find the following probabilities.

1. Both are red cards.
2. Both are spades.

Word Problem

3. In a state university, 21% of the students are on the dean's list. If 14.2% of the students takes up engineering and on the dean's list, find the probability that a student who is on the dean's list is also taking engineering.
4. At a subdivision, the probability that a house has a deck and garage is 66%. The probability that a house has a deck is 39%. Find the probability that a house has a deck also has a garage.
5. At a fast food restaurant, the probability that a customer orders a cheeseburger and french fries is 75%. The probability that a customer orders a cheeseburger is 95%. Find the probability that a customer that orders a cheeseburger will also order french fries.
\qquad Period: \qquad Date: \qquad

CONDITIONAL PROBABILITY Exit Quiz

ANSWER

Two playing cards are taken from a standard 52 card deck without replacement. Find the following probabilities.

1. Both are red cards.

$$
\begin{aligned}
& P(A)=P(\text { Red })=\frac{26}{52}=\frac{1}{2} \\
& P(A \text { and } B)=P(\text { Red and Red })=\frac{26}{52} \cdot \frac{25}{51}=\frac{1}{2} \cdot \frac{25}{51}=\frac{25}{102} \\
& P(B \mid A)=P(\text { Red } \mid \text { Red })=\frac{P(A \text { and } B)}{P(A)}=\frac{\frac{25}{102}}{\frac{1}{2}}=\frac{25}{102} \cdot \frac{2}{1}=P(\text { Red } \mid \text { Red })=\frac{25}{51} \cong 49.02 \%
\end{aligned}
$$

2. Both are spades.

$$
\begin{aligned}
& P(A)=P(\text { Spade })=\frac{13}{52}=\frac{1}{4} \\
& P(A \text { and } B)=P(\text { Spade and Spade })=\frac{13}{52} \cdot \frac{12}{51}=\frac{1}{4} \cdot \frac{12}{51}=\frac{3}{51} \\
& P(B \mid A)=P(\text { Spade } \mid \text { Spade })=\frac{P(A \text { and } B)}{P(A)}=\frac{\frac{3}{51}}{\frac{1}{4}}=\frac{3}{51} \cdot \frac{4}{1}=P(\text { Spade } \mid \text { Spade })=\frac{12}{51} \cong 23.53 \%
\end{aligned}
$$

Word Problem

3. In a state university, 21% of the students are on the dean's list. If 14.2% of the students takes up engineering and on the dean's list, find the probability that a student who is on the dean's list is also taking engineering.

$$
\begin{aligned}
& P(A)=P(\text { Dean's list })=0.21_{P(A \text { and } B)=P(\text { Engineering and Dean's list })=0.142}^{P(B \mid A)=P(\text { Engineering } \mid \text { Dean's list })=\frac{P(A \text { and } B)}{P(A)}=\frac{0.142}{0.21}=0.67619} \begin{array}{l}
P(\text { Engineering } \mid \text { Dean's list })=67.619 \%
\end{array}
\end{aligned}
$$

\qquad Period: \qquad Date: \qquad

CONDITIONAL PROBABILITY Exit Quiz

4. At a subdivision, the probability that a house has a deck and garage is 66%. The probability that a house has a deck is 39%. Find the probability that a house has a deck also has a garage.

$$
\begin{aligned}
& P(A)=P(\text { deck })=0.66 \\
& P(A \text { and } B)=P(\text { deck and garage })=0.39 \\
& P(B \mid A)=P(\text { garage } \mid \text { deck })=\frac{P(A \text { and } B)}{P(A)}=\frac{0.39}{0.66}=0.590909090909 \\
& P(\text { garage } \mid \text { deck })=59.09 \%
\end{aligned}
$$

5. At a fast food restaurant, the probability that a customer orders a cheeseburger and french fries is 75%. The probability that a customer orders a cheeseburger is 95%. Find the probability that a customer that orders a cheeseburger will also order french fries.

$$
\begin{aligned}
& P(A)=P(\text { cheeseburger })=0.95 \\
& P(A \text { and } B)=P(\text { cheeseburger and french fries })=0.75 \\
& P(B \mid A)=P(\text { french fries } \mid \text { cheeseburger })=\frac{P(\text { A and } B)}{P(A)}=\frac{0.75}{0.95}=0.7894736 \\
& P(\text { french fries } \mid \text { cheeseburger })=78.95 \%
\end{aligned}
$$

