ORGANIZING DATA INTO MATRICES UNIT 04 LESSON 02

OBJECTIVES

STUDENTS WILL BE ABLE TO:

Add and subtract matrices

KEY VOCABULARY:

- Matrices
- Addition
- Subtraction
- Order of Matrices
- Identity Matrix

ADDITION

Sum of two matrices A and B (of the same dimensions) may be written as

$$
C=A+B
$$

The sum is defined by adding entries with the same indices.

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]+\left[\begin{array}{ll}
1 & 6 \\
4 & 5
\end{array}\right]} \\
=\left[\begin{array}{ll}
1+1 & 6+3 \\
2+4 & 5+5
\end{array}\right] \\
=\left[\begin{array}{cc}
\mathbf{2} & \mathbf{9} \\
\mathbf{6} & \mathbf{1 0}
\end{array}\right]
\end{gathered}
$$

SUBTRACTION

Difference of two matrices A and B (of the same dimensions) may be written as

$$
C=A-B
$$

The difference is defined by subtracting entries with the same indices.

$$
\begin{gathered}
{\left[\begin{array}{ll}
8 & 3 \\
6 & 5
\end{array}\right]-\left[\begin{array}{ll}
4 & 3 \\
2 & 8
\end{array}\right]} \\
=\left[\begin{array}{cc}
8-4 & 3-3 \\
6-2 & 5-8
\end{array}\right] \\
=\left[\begin{array}{cc}
4 & 0 \\
4 & -3
\end{array}\right]
\end{gathered}
$$

FINDING VALUE OF A CONSTANT

$$
\begin{gathered}
\text { If }\left[\begin{array}{l}
4 \\
3
\end{array}\right]+\left[\begin{array}{l}
k \\
2
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right] \text {,then find the value of } \mathrm{k} . \\
{\left[\begin{array}{l}
4 \\
3
\end{array}\right]+\left[\begin{array}{l}
k \\
2
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right]} \\
{\left[\begin{array}{c}
4+k \\
3+2
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right]} \\
{\left[\begin{array}{c}
4+k \\
5
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
4+k \\
5
\end{array}\right]-\left[\begin{array}{c}
10 \\
5
\end{array}\right]=0} \\
{\left[\begin{array}{c}
4+k-10 \\
5-5
\end{array}\right]=0} \\
{[4+k-10]=0} \\
k-6=0 \\
k=6
\end{gathered}
$$

PROBLEM 1

$$
\begin{aligned}
& \text { Evaluate: }\left[\begin{array}{c}
4 \\
-7
\end{array}\right]+\left[\begin{array}{l}
3 \\
8
\end{array}\right] . \\
& =\left[\begin{array}{c}
4 \\
-7
\end{array}\right]+\left[\begin{array}{l}
3 \\
8
\end{array}\right] \\
& =\left[\begin{array}{c}
4+3 \\
-7+8
\end{array}\right] \\
& =\left[\begin{array}{l}
7 \\
1
\end{array}\right]
\end{aligned}
$$

PROBLEM 2

If the order of matrix A is 3×2 and the order of matrix B is 2×2, then the order of the matrix formed by $A+B$ will be:
a. 3×2
b. 2×2
c. 3×3
d. Doesn't exist

PROBLEM 2

If the order of matrix A is 3×2 and the order of matrix B is 2×2, then the order of the matrix formed by $A+B$ will be:

It doesn't exist because matrices can't be added if their order is different.

PROBLEM 3

State whether the following statement is true or false.
a. $A+B=A-B$
T/F
b. $\mathrm{A}+\mathrm{I}=\mathrm{I}+\mathrm{A}=\mathrm{A}$
T/F
c. $A+0=0+A=A$
d. $A+B=B+A$
T/F
e. $A+(B+C)=(A+B)+C$
T/F
f. $A-0=0-A$
T/F
f. $\mathrm{A}-0=0-\mathrm{A}$
T/F

PROBLEM 3

State whether the following statement is true or false.
a. $A+B=A-B$
b. $\mathrm{A}+\mathrm{I}=\mathrm{I}+\mathrm{A}=\mathrm{A}$
c. $A+0=0+A=A$
d. $A+B=B+A$
T/F
T/F
e. $A+(B+C)=(A+B)+C$
T/F
T/F
f. $\mathrm{A}-0=0-\mathrm{A}$
T/F
f. $\mathrm{A}-0=0-\mathrm{A}$ T/F

