\qquad
\qquad Date: \qquad

Solving Equations Guided Notes

Reflexive Property	For all real numbers $x, x=x$ A number equals itself	
Reflexive Property	For all real numbers x and y, $\text { If } x=y \text {, then } y=x$ Order of equality does not matter	These three Properties define an equivalence relation
Transitive Property	For all real numbers x and y, If x, y and z If $x=\mathrm{y}$ and $\mathrm{y}=\mathrm{z}$ then $\mathrm{x}=\mathrm{z}$ Two numbers equal to the same number are equal to each other	
Addition Property	For all real numbers x, y and z, If $x=\mathrm{y}$, then $x+z=\mathrm{y}+\mathrm{z}$	
Subtraction Property	For all real numbers x, y and z, If $x=y$, then $x-z=y-z$	
Multiplication Property	For all real numbers x, y and z, If $x=y$, then $x z=y z$	involving real numbers
Division Property	For all real numbers x, y and z, If $x=y$, and $\mathrm{z} \neq 0$, then $\frac{x}{z}=\frac{y}{z}$	

\qquad
\qquad Date: \qquad

Solving Equations Guided Notes

\(\left.$$
\begin{array}{c|c}\text { For all real numbers } x \text { and } y, \\
\hline \begin{array}{c}\text { Substitution } \\
\text { Property }\end{array}
$$ \& If x=y, then y can be substituted for x in

any expression\end{array}\right]\)| For all real numbers x, y and z, |
| :---: |
| $x(y+z)=\mathrm{xy}+\mathrm{xz}$ |

For more, see the section on the distributive property
\qquad
\qquad
\qquad

Solving Equations Guided Notes

Questions:

1. Solve the following equation for x
$2 x+6=3 x+9$
$6-9=3 x-2 x$
$x=-3$
2. Solve the following equation for x
$4(2 x+6)=2(-4 x-10)$
$8 x+24=-8 x-20$
$8 x+8 x=-20-24$
$16 x=-44$
$x=-\frac{11}{4}$
3. Solve the following equation for x

$$
\begin{aligned}
& \frac{x+4}{6}=10 \\
& x+4=6 \times 10 \\
& x+4=60 \\
& x=60-4 \\
& x=56
\end{aligned}
$$

4. A restaurant charges $\$ 9.95$ for a large pizza with two toppings, and $\$ 1.25$ for each additional topping. John bought a pizza which cost him $\$ 13.7$. Find the number of toppings.
$9.95+1.25 x=13.7$
$1.25 x=13.7-9.95$
$1.25 x=3.75$
$x=\frac{3.75}{1.25}$
$x=3$ toppings
