

SOLVING EQUATIONS UNIT 01 LESSON 04

OBJECTIVES

STUDENTS WILL BE ABLE TO:

- Solve inequalities in one variable.
- Create Inequalities in one variable.
- Understand the difference between linear inequalities and compound linear inequalities.

KEY VOCABULARY:

- Inequality.
- Compound Inequality

An inequality says that two values are not equal.

 $a \neq b$ says that a is not equal to b

There are other special symbols that show in *what way* things are not equal.

a < b says that a is less than b

a > b says that a is greater than b

(those two are known as strict inequality)

 $\mathbf{\Sigma}\mathbf{C}$

 $a \ge b$ means that a is greater than or equal to b.

PROPERTIES OF INEQUALITIESAddition PropertyFor all real numbers x,y and z,
x + z < y + zSubtraction PropertyFor all real numbers x,y and z,
 $\cdot \quad \text{If } x < y \text{, then } x - z < y - z$

Algebra2Coach.com

PROPERTIES OF INEQUALITIES

•

Multiplication Property

For all real numbers x, y and z,

If x < y then $\begin{cases}
xz < yz \text{ if } z > 0 \\
xz > yz \text{ if } z < 0 \\
xz = yz, \text{ if } z = 0
\end{cases}$

If
$$x > y$$
 then

$$\begin{cases}
xz > yz \text{ if } z > 0 \\
xz < yz \text{ if } z < 0 \\
xz = yz, \text{ if } z = 0
\end{cases}$$

with one very important exception...

when you multiply or divide an inequality by a negative value, it changes the direction of the inequality.

 $\mathbf{\Sigma}\mathbf{C}$

Solving an "And" Compound Ir	nequality: Solving an "Or"	Solving an "Or" Compound Inequality:	
$3x - 9 \le 12 \text{ and } 3x - 9 \ge$	-3 $2x + 3 < 7 c$	2x + 3 < 7 or 5x + 5 > 25	
Also Written as $3x - 9 \le 12 \land 3x - 9 \ge -3x$	Also Written as $[2x + 3 < 7]$	Also Written as $[2x + 3 < 7] V[5x + 5 > 25]$	
Or Written as $-3 \le 3x - 9 \le 12$ $6 \le 3x \le 21$ $2 \le x \le 7$ The Common 	mmon $2x + 3 < 7$ ent is $2x < 4$ d between $x < 2$ equalities. $5 + 5 > 25$	Solve the first inequality	
	single unit $5x + 5 > 25$ ach side $5x > 20$ ately. $x > 4$	Solve the second inequality	
The solution is $2 \le x \le 7$, Which can be read as $x \ge 2$ and $x \ge 1$	The solution is $x \ge 7$ Interval notation: (- ∞ ,	The solution is $x < 2$ "Or" $x > 4$ Interval notation: $(-\infty, 2) \cup (4, \infty)$	
	8 0 1 2	0 1 2 3 4 5 6 7 8	

Algebra2Coach.com

$\mathbf{\Sigma}$

Solution

Apply the distributive property to get rid of the parentheses.

 $6x + 18 \ge 4x + 8$

 $6x - 4x \ge 8 - 18$

 $2x \ge -10$

x ≥ -5

🖬 Algebra2Coach.com

Interval notation $[-5, \infty)$

Solution

Apply the distributive property to get rid of the parentheses.

- $-3x 12 \le 2x 2$
- $-3x 2x \le -2 + 12$

-5x ≤ 10

Divide both sides by -5 and remember to change the

inequality direction.

x ≥ -2

PROBLEM 4

Solve the compound inequality $3x - 9 \le 12$ and $3x - 9 \ge -3$

Solution

Solve the first inequality

3x <u><</u> 21

x <u><</u> 7

Solve the second inequality

3x <u>></u> 6

x <u>></u> 2

