

SOLVING EQUATIONS

 UNIT 01 LESSON 04

OBJECTIVES

STUDENTS WILL BE ABLE TO:

- Solve inequalities in one variable.
- Create Inequalities in one variable.
- Understand the difference between linear inequalities and compound linear inequalities.

KEY VOCABULARY:

- Inequality.
- Compound Inequality

An inequality says that two values are not equal.

$$
a \neq b \text { says that } a \text { is not equal to } b
$$

There are other special symbols that show in what way things are not equal.

$$
\begin{gathered}
a<b \text { says that } a \text { is less than } b \\
a>b \text { says that } a \text { is greater than } b
\end{gathered}
$$

(those two are known as strict inequality)

SOLVING INEQUALITIES

$\mathrm{a} \leq \mathrm{b}$ means that a is less than or equal to b
$a \geq b$ means that a is greater than or equal to b.

PROPERTIES OF INEQUALITIES

Anti reflexive Property	For all real numbers z, $x \nless x$ and $x>x$
Anti Symmetry Property	For all real numbers x and y, - If $x<y$, then $y<x$ - If $x>y$, then $y \ngtr x$
Transitive Property	For all real numbers x, y and z - If $x<y$, then $y<z$ then $x<z$ - If $x>y$, then $y>\mathrm{z}$ then $x>z$

PROPERTIES OF INEQUALITIES

Addition Property	For all real numbers x, y and z, - If $x<y$ then $x+z<y+z$
Subtraction Property	For all real numbers x, y and z, - If $x<y$, then $x-z<y-z$

PROPERTIES OF INEQUALITIES

Multiplication Property

For all real numbers x, y and z ,

- If $x<y$ then

$$
\left\{\begin{array}{l}
x z<y z \text { if } z>0 \\
x z>y z \text { if } z<0 \\
x z=y z, \text { if } z=0
\end{array}\right.
$$

- If $x>y$ then

$$
\left\{\begin{array}{l}
x z>y z \text { if } z>0 \\
x z<y z \text { if } z<0 \\
x z=y z, \text { if } z=0
\end{array}\right.
$$

PROPERTIES OF INEQUALITIES

Solving linear inequalities is the same as solving linear equations...
with one very important exception...
when you multiply or divide an inequality by a negative value, it changes the direction of the inequality.

SOLVING INEQUALITIES

A compound inequality is two simple inequalities joined by "and" or "or".

Solving an "And" Compound Inequality:

$$
3 x-9 \leq 12 \text { and } 3 x-9 \geq-3
$$

Also Written as

$$
3 x-9 \leq 12 \wedge 3 x-9 \geq-3
$$

The Common statement is sandwiched between the two inequalities. Solve as a single unit or solve each side separately.
The solution is $2 \leq x \leq 7$, Which can be read as $x \geq 2$ and $x \leq 7$ Internal notation: [2,7]

Solving an "Or" Compound Inequality:

$$
2 x+3<7 \text { or } 5 x+5>25
$$

Also Written as

$$
[2 x+3<7] \bigvee[5 x+5>25]
$$

$$
\begin{array}{|c|c|}
\hline 2 x+3<7 & \text { Solve the first } \\
2 x<4 & \text { inequality } \\
x<2 & \\
\hline 5 x+5>25 & \text { Solve the second } \\
5 x>20 & \text { inequality } \\
x & >4
\end{array}
$$

The solution is $x<2$ "Or" $x>4$
Interval notation: $(-\infty, 2) \cup(4, \infty)$

PROBLEM 1

Solve the inequality

$$
2 x-7>11
$$

Solution

Add 7 to both sides
$2 x-7+7>11+7$
$2 x>18$
Divide both sides by 2
$x>9$
Interval notation ($9, \infty$)

PROBLEM 2

Solve the inequality

$$
2 \times(3 x+9) \geq 4 \times(x+2)
$$

Solution

Apply the distributive property to get rid of the parentheses.
$6 x+18 \geq 4 x+8$
$6 x-4 x \geq 8-18$
$2 x \geq-10$
$x \geq-5$

PROBLEM 3

Solve the inequality

$$
-3 x(x+4) \leq 2 x-2
$$

Solution
Apply the distributive property to get rid of the parentheses.
$-3 x-12 \leq 2 x-2$
$-3 x-2 x \leq-2+12$
$-5 x \leq 10$
Divide both sides by -5 and remember to change the inequality direction.

$x \geq-2$

PROBLEM 4

Solve the compound inequality

$$
3 x-9 \leq 12 \text { and } 3 x-9 \geq-3
$$

Solution

Solve the first inequality
$3 x \leq 21$
$x \leq 7$
Solve the second inequality
$3 x \geq 6$
$x \geq 2$

PROBLEM 4

The solution is $\mathbf{2 \leq x \leq 7 ,}$
which can be read $\boldsymbol{x} \geq \mathbf{2}$ and $\boldsymbol{x} \leq 7$.
Interval notation: [2, 7]

