\qquad
\qquad
\qquad

Probability Assignment

1. A die is rolled find the probability that an even number is obtained.
2. A die is rolled find the probability that an odd number is obtained.
3. A coin is tossed up find the probability that Heads is obtained.
4. A coin is tossed up find the probability that Tails is obtained.
5. Two coins are tossed, find the probability that two Heads are obtained.

A bag contains 4 blue marbles, 6 green marbles and 3 yellow marbles. A marble is draw at random from bag.

6 What's the probability of drawing a green marble?
7. What's the probability of drawing a yellow marble?
8. What's the probability of drawing a green or yellow marble?
9. What's the probability of drawing blue marble?
\qquad
\qquad Date: \qquad

Probability Assignment

10. A coin is tossed three times what is the probability that at least one Heads appears?
11. A basket contains 5 oranges and 6 bananas what is the probability that orange appears when selected?
12. A die is rolled what is the probability that dots on top is greater than 4 .
13. What is the probability that a slip of number divisible by 3 is packed from slip bearing numbers $1,2,3, \ldots \ldots \ldots \ldots . . .10$
14. A die is thrown. Find probability that dots on top are prime or odd numbers.
15. A sample space $=\{1,2,3, \ldots \ldots, 9\}$ event $A=\{2,4,6,8\}$ and $B=\{1,3,5\}$ find $\mathrm{P}(\mathrm{A} \cup B)$.
\qquad
\qquad
\qquad

Probability Assignment

1. A die is rolled find the probability that an even number is obtained.

The sample space S is
$S=\{1,2,3,4,5,6\}$
Let E be event of even number
$\mathrm{E}=\{2,4,6\}$
The probability is
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{3}{6}=\frac{1}{2}$
2. A die is rolled find the probability that an odd number is obtained.

The sample space S is
$S=\{1,2,3,4,5,6\}$
Let E be event of odd number
$\mathrm{E}=\{1,3,5\}$
The probability is
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{3}{6}=\frac{1}{2}$
3. A coin is tossed up find the probability that Heads is obtained.

The sample space S is given by
$\mathrm{S}=\{\mathrm{H}, \mathrm{T}\} \quad$ (Heads, Tails)
Let E be event that H is obtained $\mathrm{E}=\{\mathrm{H}\}$
The probability of obtaining head is:
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{1}{2}$
\qquad
\qquad Date: \qquad

Probability Assignment

4. A coin is tossed up find the probability that Tails is obtained.

The sample space S is given as:
$\mathrm{S}=\{(\mathrm{H}, \mathrm{T})\}$
Let E be event that two heads are obtained
$\mathrm{E}=\{(\mathrm{T})\}$
The probability is:
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{1}{2}$
5. Two coins are tossed, find the probability that two Heads are obtained.

The sample space S is given by
$S=\{(H, T),(H, H),(T, H),(T, T)\}$
Let E be event that two Heads are obtained
$\mathrm{E}=\{(\mathrm{H}, \mathrm{H})\}$
The probability is:
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{1}{4}$

A bag contains 4 blue marbles, 6 green marbles and 3 yellow marbles. A marble is draw at random from bag.
6. What's the probability of drawing a green marble?
$\mathrm{S}=\{4$ blue, 6 green, 3 yellow $\}$
$n(S)=13$
$\mathrm{E}=\{6$ green $\}$
$n(E)=6$
\qquad
\qquad
\qquad

Probability Assignment

The probability of drawing a green marble is:
$\mathrm{P}(\mathrm{G})=\frac{n(E)}{n(S)}=\frac{6}{13} \approx 0.46$
7. What's the probability of drawing a yellow marble?
$S=\{4$ blue, 6 green, 3 yellow $\}$
$n(S)=13$
$\mathrm{E}=\{3$ yellow $\}$
$E=\{3$ yellow $\} n(E)=3$
The probability of drawing a yellow marble is:
$\mathrm{P}(\mathrm{y})=\frac{n(E)}{n(S)}=\frac{3}{13} \approx 0.23$
8. What's the probability of drawing a green or yellow marble?
$\mathrm{P}(\mathrm{G}$ or Y$)=P(G)+P(Y)$
$P(G$ or $Y)=\frac{6}{13}+\frac{3}{13}$
$\mathrm{P}(\mathrm{G}$ or Y$)=\frac{9}{13} \approx 0.69$
9. What's the probability of drawing a blue marble?
$\mathrm{S}=\{4$ blue, 6 green, 3 yellow $\}$
$n(S)=13$
$\mathrm{E}=\{4$ blue $\}$
$n(E)=4$
The probability of drawing a yellow marbles is:
$\mathrm{P}(\mathrm{B})=\frac{n(E)}{n(S)}=\frac{4}{13} \approx 0.30$
\qquad
\qquad
\qquad

Probability Assignment

10. A coin is tossed three times what is the probability that at least one Heads appears?

S = \{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT $\}$
$n(S)=8$
Let A be an event that at least one head appears then
A $=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$
$n(A)=7$
$\mathrm{P}(\mathrm{A})=\frac{n(A)}{n(S)}=\frac{7}{8} \approx 0.87$
11. A basket contains 5 oranges and 6 bananas, what is the probability that orange appears when selected?
$S=\{5$ Oranges, 6 bananas $\}$
$E=\{5$ Oranges $\}$
The probability of selected oranges
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{5}{11}$
12. A die is rolled what is the probability that dots on top is greater than 4.
$S=\{1,2,3,4,5,6\} \quad n(S)=6$
The event is that dot on top greater than 4
$\mathrm{E}=\{5,6\} n(E)=2$
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{2}{6}$
$P(E)=\frac{1}{3}$
\qquad
\qquad
\qquad

Probability Assignment

13. What is the probability that a slip of number divisible by 3 is packed from slip bearing numbers $1,2,3, \ldots \ldots \ldots \ldots . . .10$
$S=\{1,2,3, \ldots \ldots, 10\}$
Let E be the event of picking slip with number divisible by 3 .
$\mathrm{E}=\{3,6,9\}$
$\mathrm{n}(\mathrm{E})=3$
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{3}{10}$
$\mathrm{P}(\mathrm{E})=\frac{3}{10}$
14. A die is thrown. Find probability that dots on top are prime or odd numbers.
$S=\{1,2,3,4,5,6\}$
$\mathrm{n}(\mathrm{S})=6$
$\mathrm{A}=$ prime numbers $=\{2,3,5\} \mathrm{n}(\mathrm{A})=3$
$\mathrm{B}=$ odd numbers $=\{1,3,5\} \quad \mathrm{n}(\mathrm{B})=3$
$(A \cap B)=\{3,5\} \quad n(A \cap B)=2$
$\mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2}$
$P(B)=\frac{3}{6}=\frac{1}{2}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{2}{6}=\frac{1}{3}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{2}{3}$
\qquad
\qquad Date: \qquad

Probability Assignment

15. A sample space $=\{1,2,3, \ldots \ldots, 9\}$ event $A=\{2,4,6,8\}$ and $B=\{1,3,5\}$ find $\mathrm{P}(\mathrm{A} \cup B)$.
$\mathrm{S}=\{1,2,3, \ldots \ldots ., 9\} \quad \mathrm{n}(\mathrm{S})=9$
$\mathrm{A}=\{2,4,6,8\} \quad \mathrm{n}(\mathrm{A})=4$
$B=\{1,3,5\} \quad n(B)=3$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{4}{9}+\frac{3}{9}$
$P(A \cup B)=\frac{7}{9}$
