\qquad Period: \qquad Date: \qquad

Probability Guided Notes

1. Define probability.

Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1 .
2. How is probability expressed mathematically?

If an event E is defined in a sample space S then its mathematical form is:

$$
P(A)=\frac{m}{n}=\frac{\text { Number of samples points in } A}{\text { Number of samples points in } S}=\frac{n(E)}{n(S)}
$$

3. Define term 'event' in respect of probability.

An event is an individual outcome or any number of outcomes (sample points) of a random experiment.
4. What is sample place?

A set consisting of all possible outcomes that can result from a random experiment: e.g. the experiment of tossing a coin results in either of two possible outcomes, a Heads (H) or a Tails (T).

So the sample space for this experiment may be expressed as $\mathrm{S}=\{\mathrm{H}, \mathrm{T}\}$
5. Define Mutually Exclusive Events.

Two events A and B of single experiment are said to be mutually exclusive or disjoint if they cannot both occur at same time.
\qquad Period: \qquad Date: \qquad

Probability Guided Notes

A die is rolled find the probability that an odd number is obtained.

The sample space S is
$S=\{1,2,3,4,5,6\}$
Let E be event of even number
$\mathrm{E}=\{1,3,5\}$
The probability is
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{3}{6}=\frac{1}{2}$

Two coins are tossed, find the probability that two Heads are obtained.
The sample space S is given by
$\mathrm{S}=\{(\mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
Let E be event that two Heads are obtained
$\mathrm{E}=\{(\mathrm{H}, \mathrm{H})\}$
The probability is:

$$
\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{1}{4}
$$

A coin is tossed three times what is the probability that at least one Heads appears?

$$
\begin{aligned}
& \mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\} \\
& n(S)=8
\end{aligned}
$$

Let A be an event that at least one head appears then

A = \{HHH,HHT,HTH,THH,HTT,THT,TTH \}

$$
\begin{aligned}
& n(A)=7 \\
& \mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{7}{8} \approx 0.87
\end{aligned}
$$

