

PROBABILITY UNIT 01 LESSON 06

OBJECTIVES

STUDENTS WILL BE ABLE TO:

Understand what is probability, how can it be expressed and calculated.

KEY VOCABULARY:

- Define Probability.
- Express mathematical form of probability
- Define samples, events etc.

INTRODUCTION

"Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1"

If an event E is defined in a sample space S then its mathematical form is:

$$
P(A)=\frac{m}{n}=\frac{\text { Number of samples points in } A}{\text { Number of samples points in } S}=\frac{n(E)}{n(S)}
$$

INTRODUCTION

An event is an individual outcome or any number of outcomes (sample points) of a random experiment.

A set consisting of all possible outcomes that can result from a random experiment:
e.g. the experiment of tossing a coin results in either of two possible outcomes, a Heads (H) or a Tails (T).

So the sample space for this experiment may be expressed as $S=\{H, T\}$

INTRODUCTION

Two events A and B of single experiment are said to be mutually exclusive or disjoint if they cannot both occur at same time.

PROBLEM 01

A die is rolled find the probability that an odd number is obtained.

PROBLEM 01

The sample space S is
$S=\{1,2,3,4,5,6\}$
Let E be event of even number

$$
E=\{1,3,5\}
$$

The probability is
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{3}{6}=\frac{1}{2}$

02

PROBLEM 02

Two coins are tossed, find the probability that two Heads are obtained.

PROBLEM 02

The sample space S is given by
$S=\{(H, T),(H, H),(T, H),(T, T)\}$
Let E be event that two Heads are obtained
$\mathrm{E}=\{(\mathrm{H}, \mathrm{H})\}$
The probability is:
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{1}{4}$

PROBLEM 03

A coin is tossed three times what is the probability that at least one Heads appears?

PROBLEM 03

$\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$

$$
n(S)=8
$$

Let A be an event that at least one Heads appears then $A=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H\}$

$$
n(A)=7
$$

$$
\mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{7}{8} \approx 0.87
$$

