Algebra2Coach.com

 Rational Functions and their GraphsUnit 9 Lesson 3

RATIONAL FUNCTIONS AND THEIR GRAPHS

Students will be able to:

find the roots of numbers and simplify radical expressions using roots and properties of radical expressions.

Key Vocabulary

- Rational Expression
- Rational Function
- Vertical Asymptote
- Horizontal Asymptote
- Point of Discontinuity

RATIONAL FUNCTIONS AND THEIR GRAPHS

Rational Expression is the quotient of two polynomials.

$$
\frac{p(x)}{q(x)}
$$

Rational Expression is defined by a rational expression. It has an equation in the form of:

$$
f(x)=\frac{p(x)}{q(x)}, \text { where } q(x) \neq 0
$$

Simplest form:

$$
f(x)=\frac{a x-b}{c x-d}, \text { where } a, b, \text { and } c \text { are constants. }
$$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Domain of a Rational Function

is the set of all real numbers except those real numbers that make the denominator equal to zero.

Examples:

$$
f(x)=\frac{x}{x+3}
$$

$$
g(x)=\frac{5}{x-6}
$$

$$
h(x)=\frac{x+4}{(x-1)(x+4)}
$$

Domain is all real numbers except $x \neq-3$

Domain is all real
numbers except $x \neq 6$

Domain is all real numbers except $x \neq 1$ and $x \neq-4$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Sample Problem 1:

Find the domain of $g(x)=\frac{x^{2}-7 x+12}{x^{2}+9 x+20}$.
Find the values of x for which the denominator, $x^{2}+9 x+$ 20, equals to 0 .

$$
\begin{gathered}
x^{2}+9 x+20=0 \\
(x+4)(x+5)=0 \\
x=-4 \text { or } x=-5
\end{gathered}
$$

The domain is all real numbers except $\boldsymbol{x}=-\mathbf{4}$ and $\boldsymbol{x}=-\mathbf{5}$.

RATIONAL FUNCTIONS AND THEIR GRAPHS

Restrictions on the domain are described by the following definitions:

Discontinuous - a break in the line or curve on a graph
Point of Discontinuity - the point at $\boldsymbol{x}=\boldsymbol{c}$ where the function is undefined (point where the denominator $=0$). It is like a hole in the graph at $\boldsymbol{x}=\boldsymbol{c}$.

Asymptote - the line that the graph of the function approaches but never touches or crosses.

RATIONAL FUNCTIONS AND THEIR GRAPHS

Vertical Asymptote

If the rational expression of a function is written in simplest form, $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{a x - \boldsymbol { b }}}{\boldsymbol{c} \boldsymbol{x}-\boldsymbol{d}}$, and the function is undefined for $\boldsymbol{x}=\frac{\boldsymbol{d}}{\boldsymbol{c}}$, then $\boldsymbol{x}=\frac{\boldsymbol{d}}{\boldsymbol{c}}$ is a vertical asymptote.

Example:

For $(x)=\frac{x}{x-3}, x=3$ is a vertical asymptote.

RATIONAL FUNCTIONS AND THEIR GRAPHS

Vertical Asymptote

Graph of $f(x)=\frac{x}{x-3}$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Horizontal Asymptote

If the degree of $\boldsymbol{p}(\boldsymbol{x})$ is less that the degree of $\boldsymbol{q}(\boldsymbol{x})$, then $\boldsymbol{y}=\mathbf{0}$ is the equation of the horizontal asymptote of the graph of $\boldsymbol{f}(\boldsymbol{x})$.

$$
f(x)=\frac{p(x)}{q(x)}=\frac{b}{c x-d}
$$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Examples:

$$
f(x)=\frac{5}{x-7}
$$

$$
g(x)=\frac{3 x-1}{4 x^{2}-9}
$$

$$
h(x)=\frac{5 x^{2}-3 x}{x^{3}-8 x^{2}+16 x}
$$

horizontal
asymptote:

$$
y=0
$$

horizontal
asymptote:
$y=0$
horizontal asymptote:

$$
y=0
$$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Horizontal Asymptote

If the degree of $\boldsymbol{p}(\boldsymbol{x})$ is equal to the degree of $\boldsymbol{q}(\boldsymbol{x})$, and \boldsymbol{a} and \boldsymbol{c} are leading coefficients of $\boldsymbol{p}(\boldsymbol{x})$ and $\boldsymbol{q}(\boldsymbol{x})$, respectively, then
$\boldsymbol{y}=\frac{\boldsymbol{a}}{\boldsymbol{c}}$ is the equation of the horizontal asymptote of the graph of $\boldsymbol{f}(\boldsymbol{x})$.

$$
f(x)=\frac{p(x)}{q(x)}=\frac{a x-b}{c x-d}
$$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Examples:

$$
f(x)=\frac{x+2}{x-2} \quad g(x)=\frac{2 x^{2}-5}{x^{2}-7 x+12} \quad h(x)=\frac{6 x^{3}+3 x^{2}}{x^{3}+2 x-3 x}
$$

horizontal
 asymptote:

$y=\frac{a}{c}=\frac{1}{1}=y=1$
horizontal
asymptote:

$$
y=\frac{a}{c}=\frac{2}{1}=y=2
$$

horizontal
asymptote:

$$
y=\frac{a}{c}=\frac{6}{1}=y=6
$$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Horizontal Asymptote

If the degree of $\boldsymbol{p}(\boldsymbol{x})$ is less that the degree of $\boldsymbol{q}(\boldsymbol{x})$, then the graph of $f(x)$ has no horizontal asymptote

$$
f(x)=\frac{p(x)}{q(x)}=\frac{a x^{2}-b}{c x-d}
$$

Examples:

$$
f(x)=\frac{x+9}{5} \quad g(x)=\frac{x^{2}+9}{x-3} \quad h(x)=\frac{x^{3}-27}{2 x+1}
$$

No horizontal asymptote

No horizontal asymptote

No horizontal asymptote

RATIONAL FUNCTIONS AND THEIR GRAPHS

Point of Discontinuity

If $\boldsymbol{x}-\boldsymbol{b}$ is a factor of both the numerator and the denominator of a rational function, then there is a point of discontinuity in the graph of the function when $\boldsymbol{x}=\boldsymbol{b}$, unless $\boldsymbol{x}-\boldsymbol{b}$ is a vertical asymptote.

Examples:

$$
\begin{array}{ccc}
f(x)=\frac{x^{2}-9}{x-3} & g(x)=\frac{x-1}{x^{2}+4 x-5} & h(x)=\frac{x+3}{x^{2}+7 x+12} \\
f(x)=\frac{(x-3)(x+3)}{x-3} & g(x)=\frac{x-1}{(x-1)(x+5)} & h(x)=\frac{x+3}{(x+3)(x+4)}
\end{array}
$$

point of discontinuity:

$$
x=3
$$

point of discontinuity:

$$
x=1
$$

point of discontinuity:

$$
x=-3
$$

RATIONAL FUNCTIONS AND THEIR GRAPHS

Sample Problem 2:

Identify all asymptotes and holes in the graph of the rational function:

$$
\begin{gathered}
y=\frac{3-2 x-x^{2}}{x^{2}+x-2}=\frac{-\left(x^{2}+2 x-3\right)}{x^{2}+x-2}=\frac{-(x+3)(x-1)}{(x-1)(x+2)} \\
y=-\frac{x+3}{x+2}
\end{gathered}
$$

Point of Discontinuity :

$$
x=1
$$

Vertical Asymptote :

$$
x=-2
$$

Horizontal Asymptote :

$$
y=-\frac{1}{1} \Rightarrow y=-1
$$

