

Unit 8 Lesson 4

Students will be able to:

simplify and evaluate logarithmic expressions by applying the properties of logarithms **Key Vocabulary**

- Product property
- Quotient property
- Power property
- Change of Base Formula

Properties of Logarithms

1.	$\log_b 1 = 0$
2.	$\log_b b = 1$
3.	$\log_b b^k = k$
4.	$b^{\log_b a} = a$
5.	$\log_b xy = \log_b x + \log_b y$
6.	$\log_b \frac{x}{y} = \log_b x - \log_b y$
7.	$\log_b a^n = n \log_b a$

 $b > 0, b \neq 1$ a > 0, x > 0, y > 0

Inverse properties

Product property

Quotient property

Power property

Properties of Logarithms

Lo _i P	garithmic roperty	Exponential equivalent	Example
1. log	$_{b} 1 = 0$	$b^{0} = 1$	$log_{24} \ 1 = 0$
2. log	b b = 1	$b^1 = b$	$log_{42} 42 = 1$
3. log	$b^k = k$	$b^k = b^k$	$log_7 7^2 = 2$
4. b ^{log}	$b^{a} = a$	$log_b a = log_b a$	$5^{\log_5 8} = 8$

Problem 1

Use the properties of logarithms to evaluate expressions:

a)
$$\log_{\frac{1}{5}} \frac{1}{5}$$

b) $\log_{0.5} 0.5^3$
c) $8^{\log_8 64}$
a) $\log_{\frac{1}{5}} \frac{1}{5} = 1$
b) $\log_{0.5} 0.5^3 = 3$
c) $8^{\log_8 64} =$

Algebra2Coach.com

64

Examples:

1.
$$\log_{6} 9 + \log_{6} 4 = \log_{6} 36 = 2$$

2. $\log_{\frac{1}{5}} 100 - \log_{\frac{1}{5}} 4 = \log_{\frac{1}{5}} \frac{100}{4} = \log_{\frac{1}{5}} 25 = -2$

Power property

$$7. \ \log_b a^n = n \log_b a$$

$$(a^n)^k = a^{nk}$$

Examples: 1. $\log_5 25^8 = 8 \log_5 25 = 8 \cdot 2 = 16$ 2. $\log_2 0.5^{10} = 10 \log_2 \frac{1}{2} = 10 \cdot (-1) = -10$

Problem 2

Write logarithmic expression as a single logarithm:

$$\log_3 324 - 2 \log_3 2$$

Solution

$$\log_{3} 324 - 2\log_{3} 2 = \log_{3} 324 - \log_{3} 2^{2} = \log_{3} 324 - \log_{3} 4 = \log_{3} \frac{324}{4} = \log_{3} 81 = 4$$

Answer: $\log_{3} 324 - 2\log_{3} 2 = 4$

Change of Base Formula

Example:

$$\log_6 2 \cdot \log_2 36 = \frac{1}{\log_6 2} \cdot \log_2 36 = \frac{\log_2 36}{\log_2 6} = \log_6 36 = 2$$

Problem 3

State the property used to rewrite the expression:

1. $\log_2 12 - \log_2 3 = \log_2 4$ 2. $\log_3 3x = \log_3 3 + \log_3 x$ 3. $\frac{2}{3}\log_4 8 = \log_4 \sqrt[3]{64}$

1. Quotient property 2. Product property 3. Power property