Algebra2Coach.com

Properties of Logarithms

Unit 8 Lesson 4

Properties of Logarithms

Students will be able to:

simplify and evaluate logarithmic expressions by applying the properties of logarithms

Key Vocabulary

- Product property
- Quotient property
- Power property
- Change of Base Formula

Properties of Logarithms

Properties of Logarithms

1. $\log _{b} 1=0$
2. $\log _{b} b=1$

$$
\begin{gathered}
b>0, b \neq 1 \\
a>0, x>0, y>0
\end{gathered}
$$

3. $\log _{b} b^{k}=k$
4. $b^{\log _{b} a}=a$

Inverse properties
5. $\log _{b} x y=\log _{b} x+\log _{b} y$

Product property
6. $\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$

Quotient property
7. $\log _{b} a^{n}=n \log _{b} a$

Power property

Properties of Logarithms

Properties of Logarithms

	Logarithmic Property
1.	$\log _{b} 1=0$
2.	$\log _{b} b=1$
3.	$\log _{b} b^{k}=k$
4.	$b^{\log _{b} a}=a$
$\log _{b} a=\log _{b} a$	
$b^{k}=b^{k}$	
equivalent	
$b^{0}=1$	

Example
$\log _{24} 1=0$
$\log _{42} 42=1$
$\log _{7} 7^{2}=2$
$5^{\log _{5} 8}=8$

Properties of Logarithms

Problem 1

Use the properties of logarithms to evaluate expressions:
a) $\log _{\frac{1}{5}} \frac{1}{5}$
a) $\log _{\frac{1}{5}} \frac{1}{5}=1$
b) $\log _{0.5} 0.5^{3}$
b) $\log _{0.5} 0.5^{3}=3$
c) $8^{\log _{8} 64}$
c) $8^{\log _{8} 64}=64$

Properties of Logarithms

Product property

5. $\log _{b} x y=\log _{b} x+\log _{b} y$

$$
b^{n} b^{m}=b^{n+m}
$$

Quotient property

$$
\text { 6. } \begin{gathered}
\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y \\
\frac{b^{n}}{b^{m}}=b^{n+m}
\end{gathered}
$$

Examples:

1. $\log _{6} 9+\log _{6} 4=\log _{6} 36=2$
2. $\log _{\frac{1}{5}} 100-\log _{\frac{1}{5}} 4=\log _{\frac{1}{5}} \frac{100}{4}=\log _{\frac{1}{5}} 25=-2$

Properties of Logarithms

Power property

$$
\text { 7. } \begin{aligned}
\log _{b} a^{n} & =n \log _{b} a \\
\left(a^{n}\right)^{k} & =a^{n k}
\end{aligned}
$$

$\log _{b} a^{n}$

Examples:

1. $\log _{5} 25^{8}=8 \log _{5} 25=8 \cdot 2=16$
2. $\log _{2} 0.5^{10}=10 \log _{2} \frac{1}{2}=10 \cdot(-1)=-10$

Properties of Logarithms

Problem 2

Write logarithmic expression as a single logarithm:

$$
\log _{3} 324-2 \log _{3} 2
$$

Solution

$$
\begin{aligned}
& \log _{3} 324-2 \log _{3} 2=\log _{3} 324-\log _{3} 2^{2}=\log _{3} 324-\log _{3} 4= \\
& \quad=\log _{3} \frac{324}{4}=\log _{3} 81=4
\end{aligned}
$$

Answer: $\log _{3} 324-2 \log _{3} 2=4$

Properties of Logarithms

Change of Base Formula

$$
\begin{gathered}
\log _{b} a=\frac{\log _{k} a}{\log _{k} b} \\
\log _{b} a=\frac{1}{\log _{a} b}
\end{gathered} \begin{aligned}
& k>0, k \neq 1 \\
& a>0, b>0
\end{aligned}
$$

Example:

$$
\log _{6} 2 \cdot \log _{2} 36=\frac{1}{\log _{6} 2} \cdot \log _{2} 36=\frac{\log _{2} 36}{\log _{2} 6}=\log _{6} 36=2
$$

Properties of Logarithms

Problem 3

State the property used to rewrite the expression:

1. $\log _{2} 12-\log _{2} 3=\log _{2} 4$
2. $\log _{3} 3 x=\log _{3} 3+\log _{3} x$
3. $\frac{2}{3} \log _{4} 8=\log _{4} \sqrt[3]{64}$
4. Quotient property 2. Product property 3. Power property
